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INTRODUCTION

The numbering system consists of different sets of numbers that are contained within
each other. The most used number sets can be classified as: natural numbers, integers,
rationals, irrationals, real numbers, complex numbers and many others that are defined by the
cross product between these systems. This paper deals with the second set of numbers,
integers. Specifically, it deals with a specific structure in integers called “integers modulo n”
denoted by Z,, . The set of numbers in Z,, can be written by the residues of division by n. The

following definitions hold for integers modulo n:

leta,b €Z,a=bmodniffn|(a—>b)

leta,b € Z,a = bmodnisequivelanttoa = kn+ b where0 <k <b

ax = b mod n has a solution iff gcd(a,n) |b

Arithmetic procedures are carried out in Z,, in a similar manner to Z. Multiplication
and addition are denoted by +,, and *,, to differentiate the domain of these functions. The
modular n is applied to the image of these operations as illustrated below. For simplicity,
these operation will be referred to by the regular + and * signs since we are only dealing with

Z,.

(10+,,8)mod 12 = 18 mod 12 = 6 mod 12

note that 18 = 12(1) + 6 where 6 is the residue

(10 %, 8) mod 12 = 80 mod 12 = 8 mod 12

Similarly,80 = 12(6) + 8




In order to demonstrate the results of any linear operations on a set of numbers,
Cayley’s table can be constructed. This table can help illustrating properties such as identity,
closure, inverse, and associativity that will be discussed later on. Cayley’s table can be

constructed in a similar manner to the following example:

for the set H={A,B,C,D},cayley’s table for H under addition is:

A B C D

A+A | A+B | A+C | A+D
B+A | B+B | B+C | B+D
C+A | C+B | C+C | C+D
D+A | D+B | D+C | D+D

olo|mi>

Group is a term which was firstly used by Galois around 1830 to describe sets of one-
to-one functions on finite sets that could be grouped together to form a closed set under
composition. The field of groups have grown ever since. Now, a complete definition

describing groups is as follows:

let G be a set together with binary operation V that assigns to eacher orderd

pair (a,b) where a,b € G an element aVb € G.G is a said to be a group under

this operation if the following three properties are satisdied

let a,b c and e € G with binary operationV
1. Associativity:
(aVb)Vc = aV(bVc)
2. Identity:
let e be the identity of G then,
aVe=elVa=a
3. Inverse:

Va eG3Ib € GwhereaVb =bVa =e




The three requirements and closure, which is implied in the definition, are the general
requirements for a set to form a group under a binary operation V. G is said to be Abelian iff
forevery a,b € G, aVb = bVa. If there exist one pair that doesn’t satisfy this property then
G is non-Abelian. Groups of integers under multiplication or addition are among the most

common examples of Abelian groups.

Sometimes, groups with different elements or binary operations might be the same but

have different names. When there’s a map that respects the structure the group structure
between G and G we say they hold they have homomorphism. Note that both sets must have
the same size (order). If this mapping holds bijection property, we say G and G are

isomorphic, denoted as G = G.

Homomorphism:

A homomorphism @ from a group (G,*) to a group (G,") is a mapping from G
into G that preserves the group operation; that is,
@(a = b) = @(a)*@(b)foralla,b € G

Isomorphism:

(G,V)is said to be isomorphic to (E,*)if there exists a one — to

—one mapping or a function ffrom G onto G

that preserves the group operation:

f(aVb) = f(a) *x f(b) Vab €G

Euler described and defined the set of relatively prime integers U(x) to be as :

U(l) ={1 < a < x|gcd(a,x) = 1). The order of such set is also defined using Euler’s Phi



function (totient function). This function is important for calculating the order of
multiplicative groups of integers modulo n. U(1) is useful in determining when a group under

both addition and multiplication will form a field.

Fields:

let (H,+,*)be a set with two binary operations; addition and multiplication

H is said to be a field if the following requrements are met:

a) (H,+)is an abelian group
b) (H*,*) is an abelian group

c) Va,b,c €eGax(b+c)=(axb)+ (ax*c)

In this paper, some key theorems have been used in relation to Arithmetic, integers

modulo n, groups, isomorphism, Euler Phi function, and many more:

1. Fundamental Theorem of Prime Factorization
Every integer greater than 1 either is prime itself or is the product of
prime numbers, and that, although the order of the primes in the second
case is arbitrary, the primes themselves are not.
2. leta>1, a€Zthengcd(a,a—1)=1
3. Let G be a group with linear operation * and identity e then, the order of a €
G denoted by |a| is defined as:
lal =wiff a” = e for w the smallest integer ,i.e:
if a® =ethenw|s
4. Euler Phi function:

Let U(x) be defined as the set of all integers relatively prime to x.
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Ulx) ={1<a<x|gcd(ax)=1}

The order of U(x) = |U(x)| = @(x)
for x = p;l.py. .. py"

B(x) = p; oy — 1.py2 (= Do o (p — 1)
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Well defined function:
A function f is said to be well — defined if it gives the same result when
the form but not the value of an input is changed.
First isomorphism Theorem:
let f: G = H be a group homomorphism from G into H
G/Ker(f) = Range(f) < H
Kernel:
let f: G — H be a group homomorphism
The kernel of f (ker(f))is defined as:
ker(f) ={g € G : f(g) = ey} where eyis the identity in H

(U(x) u{0},+,%) is a field if f x is a prime
if klnand l|k thenl|n.Also,if a|lm,b|n and gcd(m,n) = 1
thengcd(a,b) =1
Subgroups:
if D is a finite abelian group and m| |D|, then

D has a subgroup of order m



PROBLEM STATEMENT

Theorem 1:

1. Letm € Z*,m = 2. Suppose that D is a group under multiplication with the
multiplicative identity m under multiplication modulo n where D C Z,, . Then,
a) m*—m=n>m
b) n =kl for klm,l|(m—1)
c) If xe€D,then x= m*w for some w < lsuch thatgcd(w,l) =1 (i.e.,

w € U(D)).

d) D is a group isomorphic to a subgroup of U(l)

2. Letm € Z*,n,kandlbeasl.bthen D ={kc|gcd(c,l) =1,1<c<l}isa
multiplicative group with multiplicative identity m under multiplication modulo n
where D is a subset of Z,,

3. Letm € Z*,n,kandlbeaslb. Then, D is a field iff [ is prime

Corollary 2: Let D be the group in theorem 1 and let |D| denotes the order (the size) of

D. Then |D| | (1) where n,k and l as in 1.b.

Theorem 3: let m,n € Z* such that gcd(m,n) = 1.Then, D = m.U(n)is a group

modulo mn with identity e = mc for mc = 1 mod (n),c € U(n)




PROOF

Theorem 1:

1. Letm € Z*,m > 2 . Suppose that D is a group under multiplication with the

multiplicative identity m under multiplication modulo n where D C Z,, . Then,

a n>m
if n<m,thenm & Z,
ifn=mthenm=0modn

a*xm=0modnVa €Z,

Then,n >m

b) n=klforklm,l|(m—1)

let m be the multiplicative identity for a set D C Z,, under multiplication modulo n

m+m = mmodn

nl(m?—-—m)->n|mx(m-—1)

By the Fundamental Theorem of Prime Factorization,

write n = kx*l where gcd(k,l) = 1.

sincenm+«(m—1)and n =k=*1, kxllm*(m—1).

Since ged(k, 1) = gcd(im,m — 1) =1,
we may assume that k|m,l|(m — 1), and gcd(k,m — 1) = gcd(l, m)

= 1.

c) If xin D,.then x= mx*w for some w < lsuchthatgcd(w,l) =1




axm=amodn¥Va €D ->n|((axm)—a)

nlaim—1)

sincen=k,l>kx*l|a(m—1)

Since I| (m —1) and gcd(k,m — 1) = 1,we have k |a.

Hence a =k *c where c <.

Now, we show that gcd(c, 1) = 1.

Since k|m and gcd(m,l) = 1, we have m = k x hwhere h <l and gcd(h,l) = 1.

Since D is a group and a € D, a has an inverse say b € D.Thus,

a*xb =kxcxb = m =kxh mod(n=kl). Hence, c * b = h mod (1). Since

gcd(h,l) = 1, we have gcd(c * b,l) = 1 and thus gcd(c,l) = 1.

Thus a =k *c, where gcd(c,l) = 1.

Sincem =k x h where h <landgcd(h,l) =1thenh € U(l),
ht in U(). Thus a = kxc=kxh*h 1xc

=mxhl%xc in D.

Since h™t,c¢ in U(l) and U(l) is a group under multiplication modulo [, we have

(h"tx¢) eU(). Thus a = m=x*jin D where j in U(D).

d) D is a group isomorphic to a subgroup of U(1)

Recall U(l) ={b|1<b <landgcd(b,l) = 1}is a group under multiplication

modulo l.



let f: D> U(l), and x in D. Then x = mx*z where z in U(l). Define f(x) =

f(mxz) =1z in U(l). Clearly fis well-defined.

Notethat f(m) = f(m=*1) = 1.

Let a,binD. Weshow f(a * b) = f(a) * f(b).

Sincea,b € D.wehave a = m * y and b = m * w for some y,w in U(l).

Hence f(a * b) = f(mxy*xmx*w) = f(mxyxw) = y*+w = f(a)=*f(b).

Thus f is a group — homorphism from D to U(l).

By construction of f, we see that f(x) = 1 iff x = m in D. Thus Ker(f) =

{m}. Hence by the first isomorphic Theorem we have

D= is isomorphic to Range(f) that is a subgroup of U(l).

D
Ker{f}

2. Letm,n, k and l be defined as previousand let D = {kc|ged(c, D =1,1<c <

I}. Then, D is a multiplicative group with multiplicative identity m under

multiplication modulo n where D is a subset of Z,,

The following four requirements must be met:

a) Closure:

let a,b € D,showthataxb € D. Then a=k*c and b = k* g where c,

g in U(). Since gcd(k, 1) =1, we have kxcx+g=vin U(l).

Hencea*xb = k*xcxk*xg=k*v in D.

b) Identity:



Since m= kxh (as it is shown in (1.0)) where h <l and gcd(h,l) =

1, we have m in D. Since [|(m—1), we have m =1 mod L.

letx = kxc in D where c in U(l), then x*m = kxc*m = k*cmod (kl =n)

Thus m = k = h  istheidentity in D .

c) Inverse:
let a€eD, find b €D suchthat b*a =mmodn.
Since a in D, we have a = k * ¢ where ¢ in U(l).

Since gcd(k,l) = ged(c, 1)

=1 and U(l) is a group under multiplication modulo |,

thereis a y in U(l) such that kxc *y = h mod(l). Thusk*xcxkx*xy =

k*h =m mod(n). Hence n=kxy in Dis theinverse of a
d) Associative:
Z, is associative under multiplication modulo n and D C(CZ,.

3. Let m,n k,l and D be defined as previous. Then, D is a field iff L is prime

since D is a group under multiplication modulo n with m as the identity, D is

group — isomorphic to a subgroup of U(l) by (1d). By construction of D, we
have D is group — isomorphic to U(l). Itis well-known that

U) U{0} is afield if and only if 1 is prime.
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Corollary 2: Let D be the group in theorem 1 and let |D| denotes the order (the

size) of D. Then |D| | (1) wheren,k and las in 1.b.

Since D is group — isomorphic to a subgroup of U(l) by Theorem 1(d)
and [U(D| = @),
the claim is now clear since the order of a subgroup of U(l)

must divide the order of U(l)

Theorem 3: let m,n € Z* such that gcd(m,n) = 1.Then,D = m.U(n)is a group

modulo mn with identity e = mc for mc = 1 mod (n),c € U(n)

a) Closure:
leta,b €D »>a=m=xx,b=m=xy forx,y € Un)
a*b=mx*xx*m=xy
sincegcd(m,n) = 1 thenx *m*y = zmod n for z € U(n)

hence,axb =m=z €D

b) Identity:
for identity e as defined, show that a * e = e mod mn
fora€D,a=m=x*x forx € U(n)
axe=mx*x*e=m+x*mx*cmod (mn)
> x*xe =xx*mx*cmod (n),since m*c = 1mod(n)
x*xe=xx*1=xmod(n)

then,a*ezm*x*ezm*xza

11



c) Inverse:
let a € D,show that 3 b € D such that a * b = e mod mn
leta=m=*x, for x € U(n)
since gcd(m,n) = 1 and U(n)is group
thenaw € U(n) wherewsm=x*x =c € U(n)
hencem*x*mw=mxc=e
Therefore,b = m xw is the inverse of a

d) Associativity:

D C Z,,,, which is associative under multiplication mod mn

12



EXAMPLES

Example 1:

Letm=5
m—1=4=22>k=5andl = {24}
Then, n; = 5.2 =10,n, = 5.4 = 20

5 is the multiplicative identity for some group D € Z,, under multiplication modulo n

where n = {10, 20}

Check:
52mod 10 =5
52mod 20 =5
a) D ez,

n=10=5.2=k.lfork|5andl|4 >k =5,1=2
D ={5c|gcd(c,2) =1,1<c <2}
- D = {5}

b) D € Z,,
n=20=5.4=k.lfork|l5andll4 >k =5,l=4
D ={5c|gcd(c,4) =1,1<c <4}

5D ={5(1),53)} = {5,15)




To show that these are the only groups, Cayle’s table is used for (Z,,*). Cayley’s table for

the Zyo is constructed in this example only to show that D is the only set that forms a group.

In the other examples, Cayley’s table will be used to show that D satisfies the group

requirements.

1| 2| 3| 4 6| 7| 8| 9/10|11|12|13|14| 15|16 | 17| 18| 19
1 1| 2| 3| 4 6| 7| 8| 9(10|11|12|13|14| 15|16 | 17| 18| 19
2| 2| 4] 6| 8 12114 16|18 0| 2| 4| 6| 8|10|12 |14 16|18
3| 3| 6| 9|12 8| 1 4| 7|110|113|16|19| 2| 5| 8|11 14|17
4| 4| 8|12 16 4 812116 0| 4| 8|12|16| 0| 4| 8|12 |16
6| 6|12|18| 4 16| 2| 8|14 0| 6|12|18| 4|10|16| 2| 8|14
7| 7|14 1| 8 2| 9|16 3|10|17| 4|11|18| 5|12|19| 6|13
8| 8|16 4|12 8116 4|12| 0| 8|16| 4|12| 0| 8|16| 4|12
9| 9|18| 7|16 14| 3112 1|10|19| 8|17 6|15 4|13 2|11
10/ 10| 0|10| O 0/10| 0] 10 - 10, 010 0410 0|10 O 10
11 (11| 2 (13| 4 6(17| 8|19|10| 1|12| 3|14| 5|16 7({18| 9
12 (12| 4|16 | 8 12| 4,16 8| 0|12 4|16 8| 0|12 4 16| 8
13113 | 6|19 12 811 417|110 3|16 9| 2|15| 8| 1,14 | 7
14114 8| 2|16 4(18(12| 6| 0|14 8| 2|16|/10| 4|18 |12 | 6
1511510 5| O 10 5| 0|15|10| 5| 0|15]| 10 - 011510 5
16|16 12| 8| 4 16 /12| 8| 4| 0|16|12| 8| 4| 0|16|12| 8| 4
17| 1714|111 | 8 2119|1613 |10| 7| 4| 1|18|15|12| 9| 6| 3
18| 18 | 16| 14| 12 8| 6| 4] 2| 0|18|16|14|12|10| 8| 6| 4| 2
1911918 | 17| 16 141131121110 9| 8| 7| 6| 5| 4| 3| 2| 1

Note that only the set {5, 10, 15} satisfies 5 as the multiplicative identity. Then, in
order to maintain closure, we need to check 10*10, 10*15, and 15*10. Since 10*10= 0 mod
20, and 0 & Zy, 10 is eliminated from the set. The set now becomes {5, 15}. Now 15*15=5
mod 20 therefore, 15 is the inverse of itself. Since the set {5, 15} maintains closure, inverse,

associativity and identity for multiplication modulo 20. Then {5, 15} is a group.

EZZO' l:4andD:{5,15},

U(l) = {1,3} since l is not a prime ,then D is not a field:

D is not closed under addition since5+5 =10 & D.




Whereas,in Z,,,l =2 and D = {5} abelian group under multiplication

now D U {0} = {0,5} abelian group under addition (Trivial)

Distributive property of multiplication over addition is true for all integers Z

since Z,is a subset of Z then it holds the same property.

Then D U{0}is a field.

This result is also concluded directly by looking at l.l = 2 is a prime.

Therefore,D U {0} is a field

15



Example 2:
Letm=8

m—1=7->k=1{2,4,8} and |l = {7}

Then,ny =2*x7=14,n, = 47 =28,n; =87 =56

8 is the multiplicative identity for some group D € Z,, under multiplication modulo n

where n = {14, 28, 56}

Check:

82mod 14 =8

82mod 28 =8

82mod 56 =8
a) D €Zy,

n=14=k.l - 1=7k=2
D ={2c|gcd(c,7) =1,1<c <7}

- D ={2(1),2(2),2(3),...,2(6)} = {2,4,6,8,10,12}

| [ 2] 4] 6] 8]10]12]
4 8 12 2 6 10
N8 2 10 4 12 6
12 10 8 6 4 2
2 4 6 8 10 12
6 12 4 10 2 8
10 6 2 12 8 4

=

b) D € Z,g
n=28=7x4->1=7k=4
D ={4c|gcd(c,7)=1,1<c <7}

- D ={4(1),4(2),..4(6)} = {4,8,12,16,20, 24}




--ﬂ
4 20 24 12
8 12 16 20 24
4 24 16 8

16 24 4 12 20
20 16 12 8 4

24 8 20 4 16

N = =

N oN AP

£ o (o]
= £
N

N
~
H
N

C) D € Zsq
n=56=7*x8-1=7k=28
D ={8c|gcd(c,7)=1,1<c <7}
- D ={8(1),8(2),...,8(7)}
-ﬂ
n 8 16 32 40 48
16 32 48 8 24 40

24 48 16 40 8 32
-32 8 40 16 48 24

32
40 24 8 48 32 16
48 40 32 24 16 8

All three groups constructed are isomorphic to the set {1, 2, 3, 4, 5, 6,}=U (7). It can

be easily observed that all three sets D U {0} form finite closed fields since 7 is prime.




Example 3:

Let m=37

m—1=36->k=37 andl = {2,3,4,6,9,12,18,36}

Then, n, =37.2 = 74 ,n, = 37.2%2 = 148 ,n, = 37.3 = 111,n, = 37 .32 = 333,

ne =37.3.2=1222,n, =37.22.3 = 444 n, = 37.2.3% = 666,

ng = 37.2%2.32 = 1332

37 is the multiplicative identity for some group D € Z,, under multiplication modulo n

where n = {74, 111, 148, 222, 333, 444, 666, 1332}

Check:

37°mod 74 = 37

37?°mod 111 = 37

37%mod 148 = 37

37%mod 222 = 37

37%mod 333 = 37

37%mod 444 = 37

37%mod 666 = 37

37%mod 1332 =37

a) D €Zy,

n=74=k.l »1=2k=37

18



D ={37c|gcd(c,2) =1,1<c <2}
- D ={37(1)}= {37}
Note that D is isomorphic to a subgroup in U(2) = {1}
D U {0} is a field
b) D € 7,1,
n=111=k.l -1 =3,k =37
D ={37c|gcd(c,3) =1,1<c <3}
- D ={37(1),37(2)} = {37,74}
Note that D is isomorphic to a subgroup in U(3) = {1,2}
D U {0} is a field
C) D €Z4s
n=148=k.l -1 =4k =37
D ={37c|gcd(c,4) =1,1<c <4}
- D ={37(1),37(3)} = {37,111}
Note that D is isomorphic to a subgroup in U(4) = {1,3}
D U {0} is not a field since 37 + 37 =74 ¢ D
— D U {0} is not a closed group under addition
d D €Z,,,
n=222=%k.l »1=6k=37
D ={37c|gcd(c,6) =1,1<c <6}
- D ={37(1),37(5),} = {37,185}
Note that D is isomorphic to a subgroup in U(6) = {1,5}
D U {0} is not a field since37 +37 =74 ¢ D

— D U {0} is not a closed group under addition

19



n=333=k.l -1=9k=237

D ={37c|gcd(c,9) =1,1<c <9}

— D ={37(1),37(2),37(4),37(5),37(7),37(8)}
= {37,74,148,185, 259,296}
B N ) X 1 )

kYl 37 148 185 259 296

74 148 296 37 185 259
148 296 259 74 37 185
‘5 185 37 74 259 296 148

250 185 37 296 148 74
296 250 185 148 74 37

Note that D is isomorphic to a subgroup inU(9) = {1,2,4,5,7,8}
D U {0} is not a field since 37 + 74 =111 ¢ D
— D U {0} is not a closed group under addition
) D €E Zyss
n=333=k.l -1=9k =37
D ={37c|gcd(c,9) =1,1<¢c <9}
- D ={37(1),37(8)} = {37,296}
D is isomprphic to a subgroup in U(9) = {1,8}
D U {0} is not a field since 37 + 74 =111 ¢ D
— D U {0} is not a closed group under addition
9) D €Zu
n=333=k.l -1=12,k =37
D =1{37c|ged(c,12) = 1,1 < ¢ < 12}

- D ={37(1),37(5),37(7),37(11)} = {37,185,259,407}




S I

S0 37 185 259 407
185 37 407 259
259 407 37 185
407 259 185 37

Note that D is isomorphic to a subgroup inU(12) = {1,5,7,11}
D U {0} is not a field since 37 + 37 =74 ¢ D
— D U {0} is not a closed group under addition
h) D € Zy44
n=333=k.l -1=12,k =37
D ={37c|ged(c,12) = 1,1 < ¢ < 12}
- D ={37(1),37(11)} = {37,407}
Note that D is isomorphic to a subgroup inU(12) = {1,11}
D U {0} is not a field since 37 + 37 =74 ¢ D
— D U {0} is not a closed group under addition
1) D € Zgp
n=666=k.l -1 =18k =37
D ={37c|gcd(c,18) =1,1 < ¢ <18}
- D ={37(1),37(5),37(7),37(11),37(13),37(17)}
= (37,185,259, 407,481, 629}

] T

“7 37 185 259 407 185
185 37 407 259 185 37
259 407 37 185 259 407
407 259 185 37 407 259
37 185 259 407 37 185
629 37 407 259 185 37




Note that D is isomorphic to a subgroup inU(18) = {1,5,7,11,13,17}
D U {0} is not a field since 37 + 37 =74 ¢ D
— D U {0} is not a closed group under addition
) D €Ziz3
n=1332=k.l -1 =36,k =37
D ={37c|gcd(c,36) =1,1 < c < 36}
- D

_ {37(1), 37(5),37(7),37(11),37(13),37(17),37(19),37(23), 37(25),}
B 37(29),37(31),37(35)

= {37,185,259,407,481,629,703,851,925,1073,1147,1295}
Note that D is isomorphic to a subgroup in U(36)
={1,5,7,11,13,17,19,23,25,29,31,35}
D U {0} is not a field since 37 + 37 =74 ¢ D
— D U {0} is not a closed group under addition

- T37 [uss [ 250 [dor | dsu | 629 | 703 | abd | 925 [1073 [a4r | 109 ]

37 37 185 259 407 481 629 703 851 925 1073 1147 1295

185 925 1295 703 1073 481 851 259 629 37 407 1147
259 1295 481 185 703 407 925 629 1147 851 37 1073
NP 407 703 185 481 1295 259 1073 37 851 1147 629 925
481 1073 703 1295 925 185 1147 407 37 629 259 851
629 481 407 259 185 37 1295 1147 1073 925 851 703
ik 703 851 925 1073 1147 1295 37 185 259 407 481 629
851 259 629 37 407 1147 185 925 1295 703 1073 481
P 925 629 1147 851 37 1073 259 1295 481 185 703 407
1073 37 851 1147 629 925 407 703 185 481 1295 259
1147 407 37 629 259 851 481 1073 703 1295 925 185

(ielsy 1295 1147 1073 925 851 703 629 481 407 259 185 37

Note that in every Cayley’s table for D, every element appears only once in each

raw/column. Also, since multiplication is abelian, the table is symmetric around the diagonal




(for previous example, the diagonal is from (37,37) to (1295,1295) ). Also, for every number,
we can find the inverse of that number by locating the identity in its raw/column. The number
corresponding to that raw/column is the inverse. Since every element appears once, the

inverse is unique.
Also, note that the order of D, |D|, is given by @ (1)

For example,

1 1
for D € Zy33,,1 =36 =22%32 > ¢(36) = 36(1 —§)<1 —§) =12
|D| = 1{37,185,259,407,481,629,703,851,925,1073,1147,1295}| = 12

1
forD € Zs33,l=9=32> @(9):9<1_§):6

|D| = 1{37,74,148,185,259,296}| = 6
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Example 4:

Letm=16

m-—1=15,

now for | & k we can use prime factorization instead of the previous method:

mim—1)=16%15=2%%3 %5

K ={2,4,8,16} and L = {3,5,15}

now n=kxlfork € Kandl € Lwheren>m

Then,n, =2+15=30,n, =4%5=20,n3 =4*15=60,n, =83 = 24,

ng =8%5=40,n, =8%15=120,n, =16 *3 = 48,ng = 16 * 5 = 80,

ne = 16 * 15 = 240

Note that although 2 € K and 3 € L but 16 €& Z,

16 is the multiplicative identity for some group D € Z,, under multiplication modulo n where

n = {20, 21, 30, 40, 48, 60, 80, 120, 240}

Check:

16%mod 20 = 16

16%mod 24 = 16

16%mod 30 = 16

16%mod 40 = 16

16%mod 48 = 16
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16%mod 60 = 16

16%mod 80 = 16

16%mod 120 = 16

16%mod 240 = 16

a) D €Z,
n=20=k.l »1=5k=4
D ={4c|gcd(c,5) =1,1<c <5}

- D = {4(1),4(2),4(3),4(4)} = {4,8,12,16}

| [4]8[12]16]
16 12 8 4
n 12 4 16 8
8 16 4 12
4 8 12 16

Note that D is isomorphic to a subgroup in U(5) = {1,2,3,4}
D U {0} is a field since lis a prime
b) D €Z,,
n=24=k.1l -1=3,k=8
D ={8c|gcd(c,3) =1,1<c <3}
- D =1{8(1),8(2)} = {8,16}
Note that D is isomorphic to a subgroup in U(3) = {1,2}
D U {0} is a field
c) D €Z,
n=30=k.l »1=15k=2

D ={2c|gcd(c,15) = 1,1 < c < 15}




d)

- D ={2(1),2(2),2(4),2(7),2(8),2(11),2(13),2(14)}

D ={2,48,14,16,22,26,28}

2 5 2
2|1 4 8 16 28

oo

16 2 26 4 28 14 22
2 4 22 8 26 28 14
26 22 16 14 8 4 2
4 8 14 16 22 26 28
28 26 8 22 4 2 16
14 28 4 26 2 16 8
22 14 2 28 16 8 4

N =
oo O

N N
o N b
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Note that D is isomorphic to a subgroup in U(15) = {1,2,4,7,8,11,13,14}
D U {0} is not a field since2 +4 =6 ¢ D
— D U {0} is not a closed group under addition
D € Zs,
n=30=k.l -1=15k=2
D ={2c|gcd(c,15) =1,1 < ¢ < 15}
- D =1{2(2),2(8)}
D ={4,16}
Note that D is isomorphic to a subgroup in U(15) = {2,8}
D U {0} is not a field since2 +4 =6 ¢ D
— D U {0} is not a closed group under addition
D € Zy,
n=40=k.l -1l=5k=8
D ={8c|gcd(c,5) =1,1<c <5}

— D ={8(1),8(2),8(3),8(4)} = {8,16,24,32}




9)

| [ 8 [16]24]32]
n 24 8 32 16

8 16 24 32
32 24 16 8
16 32 8 24

Note that D is isomorphic to a subgroup inU(5) = {1,2,3,4}
D U {0} is a field
D € Zyg
n=48=k.l -1 =3k=16
D ={16c|gcd(c,3)=1,1<c¢ <3}
- D ={16(1),16(2)} = {16,32}
Note that D is isomorphic to a subgroup in U(3) = {1,2}
D U {0} is a field
D € Zg,
n=60=k.l -1=15k=4
D ={4c|gcd(c,15) =1,1 < ¢ < 15}
- D = {4(1),4(2),4(4),4(7),4(8),4(11),4(13),4(14)}
= {4,8,16,28,32,44,52,56}
L Lelalelalsls
'l 16 4 52 8 56
4 16 28 32 44 52 56
e 52 28 4 56 32 16 8
8 32 56 4 28 44 52
6 44 32 28 16 8 4

8 52 16 44 8 4 32
4 56 8 52 4 32 16
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Note that D is isomorphic to a subgroup in U(15) = {1,2,4,7,8,11,13,14}

D U {0} is not a field since4+4 =8¢ D

— D U {0} is not a closed group under addition




h) D € Zg,
n=80=k.l -1l=5k=16
D ={16c|gcd(c,5) =1,1<c¢ <5}

> D ={16(1),16(2),16(3),16(4)} = {16, 32, 48, 64}

L ) )
16 16 32

32 64 16 48
48 16 64 32
64 48 32 16
Note that D is isomorphic to a subgroup inU(5) = {1,2,3,4}

D U {0} is a field
i) D €Z,
n=120=k.l >1=15k=8
D ={8c|ged(c,15) = 1,1 < ¢ < 15}
- D = {8(1),8(2),8(4),8(7),8(8),8(11),8(13),8(14)}

D = {8,16,32,56,64,88,104,112}

-ﬂ
n 64 8 16 88 104 112 56
] 8 16 32 56 64 88 104 112
16 32 64 112 8 56 88 104
56 112 16 104 8 64 32
64 8 104 16 112 56 88
04 8 56 8 112 64 32 16
7 112 104 88 64 56 32 16 8
7N 56 112 104 32 88 16 8 64
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Note that D is isomorphic to a subgroup in U(15) = {1,2,4,7,8,11,13,14}
D U {0} is not a field since 8+ 16 =24 ¢ D
— D U {0} is not a closed group under addition

J) D e ZZ4O




n=240=k.l -1=15k =16

D ={16c|gcd(c,15) =1,1 < ¢ <15}

- D ={16(1),16(2),16(4),16(7),16(8),16(11),16(13),16(14)}

D ={16,32,64,112,128,176,208,224}

L )

6 ETRE

Kyl 32 64

64 128

s 112 224

128 16

() 176 112

208 176

iy 224 208

128
16
208
32
224
112
176

112
224
208
64
176
32
16
128

128
16
32

176
64

208

224

112

176
112
224
32
208
16
128
64

208
176
112
16
224
128
64
32

208
176
128
112
64
32
16

Note that D is isomorphic to a subgroup in U(15) = {1,2,4,7,8,11,13,14}

D U {0} is not a field since 16 + 32 = 48 ¢ D

— D U {0} is not a closed group under addition
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